Entropic risk minimization for nonparametric estimation of mixing distributions
نویسندگان
چکیده
منابع مشابه
EM Algorithms for nonparametric estimation of mixing distributions
This paper describes and implements three computationally attractive procedures for nonparametric estimation of mixing distributions in discrete choice models. The procedures are specific types of the well known EM (Expectation-Maximization) algorithm based on three different ways of approximating the mixing distribution nonparametrically: (1) a discrete distribution with mass points and freque...
متن کاملNonparametric estimation via empirical risk minimization
A general notion of universal consistency of nonparametric estimators is introduced that applies to regression estimation, conditional median estimation, curve fitting, pattern recognition, and learning concepts. General methods for proving consistency of estimators based on minimizing the empirical error are shown. In particular, distribution-free almost sure consistency of neural network esti...
متن کاملNonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}
The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...
متن کاملNonparametric Density Estimation via Diffusion Mixing
Suppose we are given empirical data and a prior density about the distribution of the data. We wish to construct a nonparametric density estimator that incorporates the prior information. We propose an estimator that allows for the incorporation of prior information in the density estimation procedure within a non-Bayesian framework. The prior density is mixed with the available empirical data ...
متن کاملAsymptotic properties of nonparametric M-estimation for mixing functional data
Article history: Received 19 February 2006 Received in revised form 20 May 2007 Accepted 1 May 2008 Available online 22 May 2008 MSC: primary 62N02 62G09 secondary 62E20
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2014
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-014-5467-7